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Tiling and Packing

of:

1) n–space Rn

2) products of cycles or paths {0, 1, . . . , m− 1}n

by clusters of unit cubes

a) unit cubes −→ Number Theory

b) cubes of side length 2 −→ Graph Theory

c) cross and semicross −→ Coding Theory









Minkowski’s Conjecture

Conjecture (Minkowski 1896, 1907): In a lattice tiling of

the n-space Rn by unit cubes some pair of cubes share a complete

(n− 1)–dimensional face.

• motivated by diophantine approximation

• easy for small n = 2, 3

• gives insight into structure of lattice tilings (see diagram)

• solved by Hajos in 1941 by algebraic methods

• not correct for arbitrary tilings in high dimensions (Lagarias,

Shor 1992)

Theorem (Hajos, 1941): Let G be a finite abelian group. If a1, a2, . . . , ar

are elements of G and r1, r2, . . . , rn are positive integers such that

each element of G is uniquley expressible in the form

ax1
1 · · · axr

r , 0 ≤ x1 ≤ r1 − 1, . . . , 0 ≤ xn ≤ rn − 1

then ari
i = e for some i.







Structure

Problem in Geometry

Solution via Algebra

Motivation from Number Theory

Applications in

Coding Theory

Graph Theory

Cryptography

Links to Linear Algebra, etc.

Lattice Tiling ≡ Group Factorization







Integer Codes

An integer code consists of all words (c1, . . . , cn) ∈ Zn
m fulfilling

n∑

i=1
wi · ci = d mod m,

(w1, . . . , wn) ∈ Zn
m fixed sequence of weights

d is an element of Zm

n is the length of the code

m is the size of the code alphabet.



Applications

Coding Theory

Single–error correcting codes

in various settings: substitution, deletion, insertion, permutation,

RLL, symmetric, asymmetric, erasure, etc. – appropriate choice of

the weight sequence

Perfect codes

Computer Science

Packet loss in internet communication (Sloane 2002)

Deletions in genome sequences

Efficient placement of resources in distributed computations

Flash Memories

Graph Theory

Codes in graphs (Biggs 1973)

graphs often related to error–correcting codes

Domination

Cryptography

Cryptosystems via Factorization of groups

steganography



The syndrome

The effect of a single error is reflected in the behaviour of the

syndrome, which should be changed to a value different from d

Example: substitution of the letter ci by ci ± j

w1c1 + . . . wi−1ci−1 + wi(ci ± j) + wi+1ci+1 + . . . wncn

= d± wi · j,
Example: permutation of letters ci and ci+1

w1c1 + . . . wi−1ci−1 + wici+1 + wi+1ci + wi+2ci+2 + . . . wncn =

d + (wi − wi+1)(ci+1 − ci).

Example: peak shifts in RLL codes (Levenshtein, Vinck 1993)

w1c1 + . . . + wi−1ci−1 + wi(ci ± j) + wi+1(ci+1 ∓ j)

+wi+2ci+2 + . . . + wncn = d± (wi − wi+1)j.

In order to be able to correct one single error, the syndromes of

an integer code have to be pairwisely different. So if the possible

distortions are from an error set E and the linear combinations of

the weights are from a set H, then we have to assure that

e · h 6= e′ · h′ for all e, e′ ∈ E and h, h′ ∈ H.

H syndrome code, shift code for E = {1, . . . , k} (Levenshtein,

Vinck 1993)

If all possible values occur as a syndrome, then the code is perfect.

(E ,H) factorization of group Z∗
p



General Construction

Zp – p prime number, Z∗
p = (Zp \ {0}, ·)

g generator of Z∗
p , i.e.,

Z∗
p = {gj : j = 0, . . . , p− 1}

E = {a0, a1, . . . , ak}

Criterion (T. 2005): Let ai = gµi for i = 0, . . . , k− 1. A perfect

integer code exists, if

{µ0 mod k, . . . , µk−1 mod k} = {0, . . . , k − 1}.

Similar construction for E = {±a0,±a1, . . . ,±ak}
by replacing Z∗

p by Z∗
p/{1,−1}.

Examples E = {±1,±3,±5,±7}:
H = {1, 4, 6, 9, 16, 22, 24, 33, 35, 36, 43, 47} in Z97

5 is a generator of Z97/{1,−1}

50 = 1, 51 = 5, 522 = 3, 531 = 7.

0 ≡ 0 mod 4, 1 ≡ 1 mod 4, 22 ≡ 2 mod 4, 31 ≡ 3 mod 4,



Several Error Sets

1. The error set E = {±1,±a} (Morita, Geyser, van Wijngaarden

2003):

The element a2 has an even order modulo p

2. The error set E = {±1,±a,±b} (T. 1997):

1 The orders of a and b are both divisible by 3.

2 Whenever bl1 = al2 for some integers l1, l2, then l1 + l2 ≡ 0

mod 3.

H = {ai · bj, i− j ≡ 0 mod 3} is generated by the elements a3, b3

and a · b.

3. The error set E = {±1,±a,±b,±c} (T. 2005):

1 In Zp ∗ /{1,−1} the orders of a and b are divisible by 4 and

the order of c is divisible by 2,

2 whenever ai · bj ∈ G then i + j ≡ 0 mod 4,

3 whenever ai · cj ∈ G then 2i + j ≡ 0 mod 4,

4 whenever bi · cj ∈ G then 2i + j ≡ 0 mod 4.

H is generated by the elements a4, b4, a · b, c2, c · a2.



The error set {±1,±2, . . . ,±k}

by far most important case

• tilings of Rn by the cross (Stein 1967)

• group splitting

• peak shift correction in RLL codes (Levenshtein, Vinck 1993)

• codes in the Stein sphere (Golomb 1969), Lee metric as special

case

Constructions from previous slide for small k

{±1,±2}, {±1,±2,±3},
{±1,±2,±3,±4} = {±1,±2,±22,±3}
{±1,±2,±3,±4,±5} = {±1,±2,±22,±3,±5}





Cubes of Side length 2

Tiling of Rn obvious

Tiling of (R mod l)n?

1) l = 2m even: tiling exists

2) l = 2m + 1 odd: tiling does not exist

How good can a packing be?

number of cubes in such a packing: P (2m + 1, n)

Obviously: mn ≤ P (2m + 1, n) ≤ (2m+1
2 )n

with: Θ(2m + 1) = limn→∞ P (m,n)1/n

m ≤ Θ(2m + 1) ≤ m +
1

2

Problem equivalent to determination of the Shannon Capacity

of C2m+1.

(not so widely known)





Shannon Capacity of Odd Cycles

Shannon, 1957:

Problem stated as ”zero-error capacity” for graphs

C5 smallest graph he could not solve

(...)

Lovasz, 1979:

Θ(5) =
√

5

upper bound via Lovasz theta – function

Θ(2m+1) ≤ θ(2m+1) =
(2m + 1) cos(π/(2m + 1))

1 + cos(π/(2m + 1))
= n+

1

2
−O(1/n)

• Bohman, 2003+2005: limm→∞(m + 1
2 − Θ(2m + 1)) = 0

• for large m asymptotic is Θ(2m + 1] ≈ m + 1
2

• for small m very difficult, especially Θ(7) =?

• (...): Baumert et al. 1971, (Hales 1973), Stein 1977, etc. use

approach via cubes, improve some lower bounds

• very fundamental for Graph Theory: strong perfect graph con-

jecture (Berge)







3 × 3 Shannon Sphere

Interpretation as symmetric single–error correcting code

(generalizing question by Morita et al.)

Problem: Graph theoretic equivalent?

(for 2× 2 Shannon sphere this is the neighborhood of a cycle)

improvements of trivial construction possible

Upper bounds?

(might yield new insights into zero-error capacity)




