Lattice Packings by Clusters of Cubes

in Coding Theory

Ulrich Tamm

Bielefeld

Fig. 1. Three-dimensional spheres of radius ≤ 2 in several different metrics.

IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 1969

Tiling and Packing

of:

- 1) *n*-space \mathbb{R}^n
- 2) products of cycles or paths $\{0, 1, \ldots, m-1\}^n$

by clusters of unit cubes

a) unit cubes \longrightarrow	Number	r Theory
b) cubes of side length 2	\longrightarrow	Graph Theory
c) cross and semicross	\longrightarrow	Coding Theory

Clusters of Cubes (Unit) single cube 2 auit cubes -> cube of side length Z

(k,n) - Semicross

 $l_{k=3}$, n=2

Minkowski's Conjecture

Conjecture (Minkowski 1896, 1907): In a lattice tiling of the *n*-space \mathbb{R}^n by unit cubes some pair of cubes share a complete (n-1)-dimensional face.

- motivated by diophantine approximation
- easy for small n = 2, 3
- gives insight into structure of lattice tilings (see diagram)
- solved by Hajos in 1941 by algebraic methods
- not correct for arbitrary tilings in high dimensions (Lagarias, Shor 1992)

Theorem (Hajos, 1941): Let G be a finite abelian group. If a_1, a_2, \ldots, a_r are elements of G and r_1, r_2, \ldots, r_n are positive integers such that each element of G is uniquley expressible in the form

 $a_1^{x_1} \cdots a_r^{x_r}, \qquad 0 \le x_1 \le r_1 - 1, \dots, 0 \le x_n \le r_n - 1$ then $a_i^{r_i} = e$ for some *i*.

Structure

Problem in Geometry
Solution via Algebra
Motivation from Number Theory
Applications in
Coding Theory
Graph Theory
Cryptography
Links to Linear Algebra, etc.

Lattice Tiling \equiv Group Factorization

· possible for all k , n=Z

k=2, n=2 not possible

Integer Codes

An integer code consists of all words $(c_1, \ldots, c_n) \in Z_m^n$ fulfilling

$$\sum_{i=1}^{n} w_i \cdot c_i = d \mod m,$$

 $(w_1,\ldots,w_n)\in Z_m^n$ fixed sequence of weights

d is an element of \mathbb{Z}_m

n is the length of the code

 \boldsymbol{m} is the size of the code alphabet.

Applications

Coding Theory

Single–error correcting codes in various settings: substitution, deletion, insertion, permutation, RLL, symmetric, asymmetric, erasure, etc. – appropriate choice of the weight sequence

Perfect codes

Computer Science

Packet loss in internet communication (Sloane 2002)

Deletions in genome sequences

Efficient placement of resources in distributed computations

Flash Memories

Graph Theory

Codes in graphs (Biggs 1973) graphs often related to error–correcting codes

Domination

Cryptography

Cryptosystems via Factorization of groups

steganography

The syndrome

The effect of a single error is reflected in the behaviour of the syndrome, which should be changed to a value different from d

Example: substitution of the letter c_i by $c_i \pm j$

$$w_1c_1 + \dots w_{i-1}c_{i-1} + w_i(c_i \pm j) + w_{i+1}c_{i+1} + \dots w_nc_n$$

= $d \pm w_i \cdot j$,

Example: permutation of letters c_i and c_{i+1}

$$w_1c_1 + \dots + w_{i-1}c_{i-1} + w_ic_{i+1} + w_{i+1}c_i + w_{i+2}c_{i+2} + \dots + w_nc_n = d + (w_i - w_{i+1})(c_{i+1} - c_i).$$

Example: peak shifts in RLL codes (Levenshtein, Vinck 1993)

$$w_1c_1 + \ldots + w_{i-1}c_{i-1} + w_i(c_i \pm j) + w_{i+1}(c_{i+1} \mp j) + w_{i+2}c_{i+2} + \ldots + w_nc_n = d \pm (w_i - w_{i+1})j.$$

In order to be able to correct one single error, the syndromes of an integer code have to be pairwisely different. So if the possible distortions are from an error set \mathcal{E} and the linear combinations of the weights are from a set \mathcal{H} , then we have to assure that

$$e \cdot h \neq e' \cdot h'$$
 for all $e, e' \in \mathcal{E}$ and $h, h' \in \mathcal{H}$.

 $\mathcal H$ syndrome code, shift code for $\mathcal E=\{1,\ldots,k\}$ (Levenshtein, Vinck 1993)

If all possible values occur as a syndrome, then the code is perfect.

 $(\mathcal{E}, \mathcal{H})$ factorization of group Z_p^*

General Construction

$$Z_p - p$$
 prime number, $Z_p^* = (Z_p \setminus \{0\}, \cdot)$

g generator of Z_p^* , i.e., $Z_p^* = \{g^j : j = 0, \dots, p-1\}$

$$\mathcal{E} = \{a_0, a_1, \dots, a_k\}$$

Criterion (T. 2005): Let $a_i = g^{\mu_i}$ for $i = 0, \ldots, k-1$. A perfect integer code exists, if

$$\{\mu_0 \mod k, \ldots, \mu_{k-1} \mod k\} = \{0, \ldots, k-1\}.$$

Similar construction for $\mathcal{E} = \{\pm a_0, \pm a_1, \dots, \pm a_k\}$ by replacing Z_p^* by $Z_p^*/\{1, -1\}$.

Examples $\mathcal{E} = \{\pm 1, \pm 3, \pm 5, \pm 7\}$: $\mathcal{H} = \{1, 4, 6, 9, 16, 22, 24, 33, 35, 36, 43, 47\}$ in Z_{97}

5 is a generator of $Z_{97}/\{1, -1\}$

$$5^0 = 1,$$
 $5^1 = 5,$ $5^{22} = 3,$ $5^{31} = 7.$

 $0 \equiv 0 \mod 4$, $1 \equiv 1 \mod 4$, $22 \equiv 2 \mod 4$, $31 \equiv 3 \mod 4$,

Several Error Sets

1. The error set $\mathcal{E} = \{\pm 1, \pm a\}$ (Morita, Geyser, van Wijngaarden 2003):

The element a^2 has an even order modulo p

- 2. The error set $\mathcal{E} = \{\pm 1, \pm a, \pm b\}$ (T. 1997):
 - 1 The orders of a and b are both divisible by 3.
 - 2 Whenever $b^{l_1} = a^{l_2}$ for some integers l_1, l_2 , then $l_1 + l_2 \equiv 0 \mod 3$.

 $\mathcal{H} = \{a^i \cdot b^j, i - j \equiv 0 \mod 3\}$ is generated by the elements a^3, b^3 and $a \cdot b$.

- 3. The error set $\mathcal{E} = \{\pm 1, \pm a, \pm b, \pm c\}$ (T. 2005):
 - 1 In $Z_p * / \{1, -1\}$ the orders of a and b are divisible by 4 and the order of c is divisible by 2,
 - 2 whenever $a^i \cdot b^j \in \mathcal{G}$ then $i + j \equiv 0 \mod 4$,
 - 3 whenever $a^i \cdot c^j \in \mathcal{G}$ then $2i + j \equiv 0 \mod 4$,
 - 4 whenever $b^i \cdot c^j \in \mathcal{G}$ then $2i + j \equiv 0 \mod 4$.
- \mathcal{H} is generated by the elements $a^4, b^4, a \cdot b, c^2, c \cdot a^2$.

The error set $\{\pm 1, \pm 2, \ldots, \pm k\}$

by far most important case

- tilings of \mathbb{R}^n by the cross (Stein 1967)
- group splitting
- peak shift correction in RLL codes (Levenshtein, Vinck 1993)
- codes in the Stein sphere (Golomb 1969), Lee metric as special case

Constructions from previous slide for small k

 $\{\pm 1, \pm 2\}, \{\pm 1, \pm 2, \pm 3\}, \\ \{\pm 1, \pm 2, \pm 3, \pm 4\} = \{\pm 1, \pm 2, \pm 2^2, \pm 3\} \\ \{\pm 1, \pm 2, \pm 3, \pm 4, \pm 5\} = \{\pm 1, \pm 2, \pm 2^2, \pm 3, \pm 5\}$

Codes on Lattices

axa grid

G W 1 Z O O 2 G Cot 1 Co Co Co Co 7G+1 B e) [6] 30 e e X e è e e e ٢ D

single error $X \mapsto X \pm 1, X \pm 0,$

Cubes of Side length 2

Tiling of \mathbb{R}^n obvious

Tiling of $(R \mod l)^n$?

1) l = 2m even: tiling exists

2) l = 2m + 1 odd: tiling does not exist

How good can a packing be?

number of cubes in such a packing: P(2m+1, n)

Obviously: $m^n \leq P(2m+1, n) \leq (\frac{2m+1}{2})^n$

with: $\Theta(2m+1) = \lim_{n \to \infty} P(m, n)^{1/n}$

$$m \le \Theta(2m+1) \le m + \frac{1}{2}$$

Problem equivalent to determination of the **Shannon Capacity** of C_{2m+1} . (not so widely known)

4 cubes

5 cuber

g cosses

lo cubes

Shannon Capacity of Odd Cycles

Shannon, 1957:

Problem stated as "zero-error capacity" for graphs C_5 smallest graph he could not solve

 (\dots)

Lovasz, 1979: $\Theta(5) = \sqrt{5}$ upper bound via Lovasz theta – function

$$\Theta(2m+1) \le \theta(2m+1) = \frac{(2m+1)\cos(\pi/(2m+1))}{1+\cos(\pi/(2m+1))} = n + \frac{1}{2} - O(1/n)$$

- Bohman, 2003+2005: $\lim_{m\to\infty} (m + \frac{1}{2} \Theta(2m + 1)) = 0$
- for large m asymptotic is $\Theta(2m+1] \approx m + \frac{1}{2}$
- for small m very difficult, especially $\Theta(7) = ?$
- (...): Baumert et al. 1971, (Hales 1973), Stein 1977, etc. use approach via cubes, improve some lower bounds
- very fundamental for Graph Theory: strong perfect graph conjecture (Berge)

							-					der.		*											-																
				•																								_	_											4	
						3		4		9	re	L. J	25	0	ti	2	On !	56	e		4	0																			
									1	24	5	1		-,									1						4	Ζ	_			1	2	1			4		1
									10		+ /	1		_k	CX		-	T	20	= Y	Qu	S	j le	5		5	4	2	12	+	/	-/	X	CIC	4	1	2-	ec	29	rs/	ju
										1					1	0	i																1	-							
								6		La	C	12	5	_	lė	ť	t	-	Cl	25	40	T	5		14	-	F	0	14	, ł	5		6	L	5	1	L	01	10	-	
											4		1						~					1	1		2					,			~						
											0	+	k	0			3	- (O		V	n	201		(2	4	1		/											
		-				y1;																						-	-	_											
					•		R.																				- 1														
•																																8								× .	
												-																													
										а 																	-	_		- 1											
							- · ·													4								-													
		1	J						4		~												•																		
	-																											7/											1		
4					1																													2					d		
													1																		-						-	i			
							1																		-		100									2					

3×3 Shannon Sphere

Interpretation as symmetric single–error correcting code (generalizing question by Morita et al.)

Problem: Graph theoretic equivalent?

(for 2×2 Shannon sphere this is the neighborhood of a cycle)

improvements of trivial construction possible

Upper bounds?

(might yield new insights into zero-error capacity)