Lattice Packings by Clusters of Cubes

in Coding Theory

Ulrich Tamm

Bielefeld

IEEE TRANSACTIONS ON INFORMATION THEORY, MAY 1969

Fig. 1. Three-dimensional spheres of radius $£ 2$ in several different metrics.

Tiling and Packing

of:

1) n-space R^{n}
2) products of cycles or paths $\{0,1, \ldots, m-1\}^{n}$
by clusters of unit cubes
a) unit cubes $\longrightarrow \quad$ Number Theory
b) cubes of side length 2 \qquad Graph Theory
c) cross and semicross
$\longrightarrow \quad$ Coding Theory

Clusters of Cubes (Unit)

single cube

2^{n} unit cubes
\rightarrow cube of side length 2

$$
(k, n) \text {-semicross }
$$

$$
k=3, n=2
$$

$$
(k, n)-\operatorname{cross}
$$

$$
k=3, n=2
$$

n-dimension k - \#cubse attacked in each direction

Minkowski's Conjecture

Conjecture (Minkowski 1896, 1907): In a lattice tiling of the n-space R^{n} by unit cubes some pair of cubes share a complete ($n-1$)-dimensional face.

- motivated by diophantine approximation
- easy for small $n=2,3$
- gives insight into structure of lattice tilings (see diagram)
- solved by Hajos in 1941 by algebraic methods
- not correct for arbitrary tilings in high dimensions (Lagarias, Shor 1992)

Theorem (Hajos, 1941): Let G be a finite abelian group. If $a_{1}, a_{2}, \ldots, a_{r}$ are elements of G and $r_{1}, r_{2}, \ldots, r_{n}$ are positive integers such that each element of G is uniquley expressible in the form

$$
a_{1}^{x_{1}} \cdots a_{r}^{x_{r}}, \quad 0 \leq x_{1} \leq r_{1}-1, \ldots, 0 \leq x_{n} \leq r_{n}-1
$$

then $a_{i}^{r_{i}}=e$ for some i.

Structure

Problem in Geometry
Solution via Algebra
Motivation from Number Theory
Applications in
Coding Theory
Graph Theory
Cryptography
Links to Linear Algebra, etc.

Lattice Tiling \equiv Group Factorization

Tiling by semicross

$$
k=1
$$

- passible for all $k, n=2$

Tiling by cross

centers in $(0,0),(1,2),(2,4),(3,1),(4,2)$ atc.

$$
\begin{aligned}
& \{(i, j): i+2 j \equiv 0 \bmod 5\} \\
& k=1, n \geqslant 2: \text { canters in } \\
& \left\{\left(i_{1}, i_{2}, \ldots, i_{n}\right): i_{1}+2 i_{2}+3 i_{3}+\ldots+n-i_{n}\right. \\
& \equiv 0 \bmod (2 n+1)\}
\end{aligned}
$$

$k=2, i=2$ not possible

Integer Codes

An integer code consists of all words $\left(c_{1}, \ldots, c_{n}\right) \in Z_{m}^{n}$ fulfilling

$$
\sum_{i=1}^{n} w_{i} \cdot c_{i}=d \bmod m,
$$

$\left(w_{1}, \ldots, w_{n}\right) \in Z_{m}^{n}$ fixed sequence of weights
d is an element of Z_{m}
n is the length of the code
m is the size of the code alphabet.

Applications

Coding Theory

Single error correcting codes
in various settings: substitution, deletion, insertion, permutation, RLL, symmetric, asymmetric, erasure, etc. - appropriate choice of the weight sequence

Perfect codes

Computer Science

Packet loss in internet communication (Sloane 2002)
Deletions in genome sequences
Efficient placement of resources in distributed computations
Flash Memories

Graph Theory

Codes in graphs (Biggs 1973)
graphs often related to error-correcting codes
Domination

Cryptography

Cryptosystems via Factorization of groups
steganography

The syndrome

The effect of a single error is reflected in the behaviour of the syndrome, which should be changed to a value different from d Example: substitution of the letter c_{i} by $c_{i} \pm j$

$$
\begin{gathered}
w_{1} c_{1}+\ldots w_{i-1} c_{i-1}+w_{i}\left(c_{i} \pm j\right)+w_{i+1} c_{i+1}+\ldots w_{n} c_{n} \\
=d \pm w_{i} \cdot j
\end{gathered}
$$

Example: permutation of letters c_{i} and c_{i+1}

$$
\begin{gathered}
w_{1} c_{1}+\ldots w_{i-1} c_{i-1}+w_{i} c_{i+1}+w_{i+1} c_{i}+w_{i+2} c_{i+2}+\ldots w_{n} c_{n}= \\
d+\left(w_{i}-w_{i+1}\right)\left(c_{i+1}-c_{i}\right)
\end{gathered}
$$

Example: peak shifts in RLL codes (Levenshtein, Vinck 1993)

$$
\begin{aligned}
& w_{1} c_{1}+\ldots+w_{i-1} c_{i-1}+w_{i}\left(c_{i} \pm j\right)+w_{i+1}\left(c_{i+1} \mp j\right) \\
& \quad+w_{i+2} c_{i+2}+\ldots+w_{n} c_{n}=d \pm\left(w_{i}-w_{i+1}\right) j
\end{aligned}
$$

In order to be able to correct one single error, the syndromes of an integer code have to be pairwisely different. So if the possible distortions are from an error set \mathcal{E} and the linear combinations of the weights are from a set \mathcal{H}, then we have to assure that

$$
e \cdot h \neq e^{\prime} \cdot h^{\prime} \text { for all } e, e^{\prime} \in \mathcal{E} \text { and } h, h^{\prime} \in \mathcal{H}
$$

\mathcal{H} syndrome code, shift code for $\mathcal{E}=\{1, \ldots, k\}$ (Levenshtein, Vinck 1993)

If all possible values occur as a syndrome, then the code is perfect. $(\mathcal{E}, \mathcal{H})$ factorization of group Z_{p}^{*}

General Construction

$Z_{p}-p$ prime number, $\quad Z_{p}^{*}=\left(Z_{p} \backslash\{0\}, \cdot\right)$
g generator of Z_{p}^{*}, i.e.,
$Z_{p}^{*}=\left\{g^{j}: j=0, \ldots, p-1\right\}$
$\mathcal{E}=\left\{a_{0}, a_{1}, \ldots, a_{k}\right\}$

Criterion (T. 2005): Let $a_{i}=g^{\mu_{i}}$ for $i=0, \ldots, k-1$. A perfect integer code exists, if

$$
\left\{\mu_{0} \bmod k, \ldots, \mu_{k-1} \bmod k\right\}=\{0, \ldots, k-1\} .
$$

Similar construction for $\mathcal{E}=\left\{ \pm a_{0}, \pm a_{1}, \ldots, \pm a_{k}\right\}$
by replacing Z_{p}^{*} by $Z_{p}^{*} /\{1,-1\}$.

Examples $\mathcal{E}=\{ \pm 1, \pm 3, \pm 5, \pm 7\}$:
$\mathcal{H}=\{1,4,6,9,16,22,24,33,35,36,43,47\}$ in Z_{97}
5 is a generator of $Z_{97} /\{1,-1\}$
$5^{0}=1, \quad 5^{1}=5, \quad 5^{22}=3, \quad 5^{31}=7$.
$0 \equiv 0 \bmod 4, \quad 1 \equiv 1 \bmod 4, \quad 22 \equiv 2 \bmod 4, \quad 31 \equiv 3 \bmod 4$,

Several Error Sets

1. The error set $\mathcal{E}=\{ \pm 1, \pm a\}$ (Morita, Geyser, van Wijngaarden 2003):

The element a^{2} has an even order modulo p
2. The error set $\mathcal{E}=\{ \pm 1, \pm a, \pm b\}$ (T. 1997):

1 The orders of a and b are both divisible by 3 .
2 Whenever $b^{l_{1}}=a^{l_{2}}$ for some integers l_{1}, l_{2}, then $l_{1}+l_{2} \equiv 0$ $\bmod 3$.
$\mathcal{H}=\left\{a^{i} \cdot b^{j}, i-j \equiv 0 \bmod 3\right\}$ is generated by the elements a^{3}, b^{3} and $a \cdot b$.
3. The error set $\mathcal{E}=\{ \pm 1, \pm a, \pm b, \pm c\}$ (T. 2005):

1 In $Z_{p} * /\{1,-1\}$ the orders of a and b are divisible by 4 and the order of c is divisible by 2 ,

2 whenever $a^{i} \cdot b^{j} \in \mathcal{G}$ then $i+j \equiv 0 \bmod 4$,
3 whenever $a^{i} \cdot c^{j} \in \mathcal{G}$ then $2 i+j \equiv 0 \bmod 4$,
4 whenever $b^{i} \cdot c^{j} \in \mathcal{G}$ then $2 i+j \equiv 0 \bmod 4$.
\mathcal{H} is generated by the elements $a^{4}, b^{4}, a \cdot b, c^{2}, c \cdot a^{2}$.

The error set $\{ \pm 1, \pm 2, \ldots, \pm k\}$

by far most important case

- tilings of R^{n} by the cross (Stein 1967)
- group splitting
- peak shift correction in RLL codes (Levenshtein, Vinck 1993)
- codes in the Stein sphere (Golomb 1969), Lee metric as special case

Constructions from previous slide for small k
$\{ \pm 1, \pm 2\},\{ \pm 1, \pm 2, \pm 3\}$,
$\{ \pm 1, \pm 2, \pm 3, \pm 4\}=\left\{ \pm 1, \pm 2, \pm 2^{2}, \pm 3\right\}$
$\{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 5\}=\left\{ \pm 1, \pm 2, \pm 2^{2}, \pm 3, \pm 5\right\}$

Codes Bu Lattices

$$
a \times a \quad \text { grid }
$$

1	2_{0}	0	0	a_{0}
$u+1$	0	0	0	$2 a$
$2 a+1$				
20	0	0	$3 a$	
0	0	\times	0	0
0	0	0	0	0

$$
\text { single error } x \mapsto x \pm 1, x \pm 0
$$

Cubes of Side length 2

Tiling of R^{n} obvious
Tiling of $(R \bmod l)^{n}$?

1) $l=2 m$ even: tiling exists
2) $l=2 m+1$ odd: tiling does not exist

How good can a packing be?
number of cubes in such a packing: $P(2 m+1, n)$

Obviously: $m^{n} \leq P(2 m+1, n) \leq\left(\frac{2 m+1}{2}\right)^{n}$
with: $\Theta(2 m+1)=\lim _{n \rightarrow \infty} P(m, n)^{1 / n}$

$$
m \leq \Theta(2 m+1) \leq m+\frac{1}{2}
$$

Problem equivalent to determination of the Shannon Capacity of $C_{2 m+1}$.
(not so widely known)

4 cubes

g cebbej

$5 \mathrm{CiS}_{2} 5$

10 cubes

Shannon Capacity of Odd Cycles

Shannon, 1957:
Problem stated as "zero-error capacity" for graphs
C_{5} smallest graph he could not solve
(...)

Lovasz, 1979:
$\Theta(5)=\sqrt{5}$
upper bound via Lovasz theta - function
$\Theta(2 m+1) \leq \theta(2 m+1)=\frac{(2 m+1) \cos (\pi /(2 m+1))}{1+\cos (\pi /(2 m+1))}=n+\frac{1}{2}-O(1 / n)$

- Bohman, 2003+2005: $\lim _{m \rightarrow \infty}\left(m+\frac{1}{2}-\Theta(2 m+1)\right)=0$
- for large m asymptotic is $\Theta(2 m+1] \approx m+\frac{1}{2}$
- for small m very difficult, especially $\Theta(7)=$?
- (...): Baumert et al. 1971, (Hales 1973), Stein 1977, etc. use approach via cubes, improve some lower bounds
- very fundamental for Graph Theory: strong perfect graph conjecture (Berge)
103×3 rectangles in a 10×10 rectangle

- generalizable to

$$
k^{2}+1 \quad k \times k \text { rectangles in a }\left(k^{2}+1\right) \times\left(k^{2}+1\right) \text { rectangle }
$$

- Lower left corners in paints (i is) with

$$
i+k j \equiv 0 \bmod \left(k^{2}+1\right)
$$

equivalence $2 x^{2}$

graph
stray prodact

cocle (asyumenetic)
equivalence $7 \times 3 ?$

cocle (sywnelsic)

$$
\begin{aligned}
& \text { greph? } \\
& \text { (maybe undireded }
\end{aligned}
$$

3×3 Shannon Sphere

Interpretation as symmetric single error correcting code
(generalizing question by Morita et al.)

Problem: Graph theoretic equivalent?
(for 2×2 Shannon sphere this is the neighborhood of a cycle)
improvements of trivial construction possible

Upper bounds?
(might yield new insights into zero-error capacity)

